Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho hình thoi ABCD có hai đỉnh A(3;-1;1), B(-1;1;3). Viết phương trình đường thẳng CD biết tâm I của hình thoi nằm trên đường thẳng d: \frac{x-3}{1}=\frac{y-5}{1}=\frac{z-4}{1}.

Trong không gian với hệ tọa độ Oxyz, cho hình thoi ABCD có hai đỉnh A(3;

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho hình thoi ABCD có hai đỉnh A(3;-1;1), B(-1;1;3). Viết phương trình đường thẳng CD biết tâm I của hình thoi nằm trên đường thẳng d: \frac{x-3}{1}=\frac{y-5}{1}=\frac{z-4}{1}.


A.
Phương trình đường thẳng CD:  \frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-1}{1}
B.
Phương trình đường thẳng CD: \frac{x+3}{2}=\frac{y-5}{1}=\frac{z-1}{-1}
C.
Phương trình đường thẳng CD: \frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-1}{-1}
D.
Phương trình đường thẳng CD: \frac{x-3}{2}=\frac{y-5}{-1}=\frac{z-1}{-1}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Vì I nằm trên đường thẳng d nên I(3+t; 5+t; 4+t).

Vì ABCD là hình thoi nên

\overrightarrow{AI}.\overrightarrow{BI}=0 ⇔ t(t+4) + (6+t)(4+t) + (3+t)(1+t)=0 ⇔ t = -3

Vậy I(0;2;1). Vì C đối xứng với A qua I nên C(-3;5;1).

Vì D đối xứng với B qua I nên D(1;3;-1).

Phương trình đường thẳng CD:\frac{x+3}{2} = \frac{y-5}{-1} = \frac{z-1}{-1}

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.