Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho \left ( \alpha \right ) : 3x + 2y - z + 4 = 0, I(2; 2; 0). Tìm tọa độ điểm M biết rằng MI ⊥ \left ( \alpha \right ), đồng thời M cách đều gốc tọa độ và mặt phẳng \left ( \alpha \right )

Trong không gian với hệ tọa độ Oxyz, cho

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho \left ( \alpha \right ) : 3x + 2y - z + 4 = 0, I(2; 2; 0). Tìm tọa độ điểm M biết rằng MI ⊥ \left ( \alpha \right ), đồng thời M cách đều gốc tọa độ và mặt phẳng \left ( \alpha \right )


A.
M(-\frac{1}{4}\frac{1}{2}-\frac{1}{4}
B.
M(-\frac{1}{4}\frac{1}{2}\frac{1}{4}
C.
M(-\frac{1}{4}\frac{1}{2}-\frac{3}{4}
D.
M(-\frac{1}{4}\frac{1}{2}\frac{3}{4}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Đường thẳng MI đi qua I và nhận \overrightarrow{n_{\alpha }}(3; 2; -1) là VTCP nên có phương trình 

MI: \frac{x-2}{3} = \frac{y-2}{2} =  \frac{z}{-1}

Khi đó M(2 + 3t; 2 + 2t; -t).Gọi H là hình chiếu của I lên \left ( \alpha \right ), Khi đó H là giao điểm của MI và \left ( \alpha \right ). Do đó H(-1; 0; 1)

Vì M cách đều gố tọa độ và \left ( \alpha \right ) 

nên MH = MO

 ⇔ (3t + 3)2 +(2t + 2)2+ (t + 1)2 = (2 + 3t)2 + (2 + 2t)2 + t2  

 ⇔ 8t = -6 ⇔ t = -\frac{3}{4}

Từ đó suy ra M(-\frac{1}{4}\frac{1}{2}\frac{3}{4})       

Câu hỏi liên quan

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.