Skip to main content

Trong không gian tọa độ Oxyz , cho C(0;0;2); K(6;-3;0). Viết phương trình mặt phẳng (P) qua C, K cắt trục Ox , Oy tại hai điểm A, B sao cho thể tích tứ diện OABC bằng 3. 

Trong không gian tọa độ Oxyz , cho C(0;0;2); K(6;-3;0). Viết phương trình mặt phẳng (P)

Câu hỏi

Nhận biết

Trong không gian tọa độ Oxyz , cho C(0;0;2); K(6;-3;0). Viết phương trình mặt phẳng (P) qua C, K cắt trục Ox , Oy tại hai điểm A, B sao cho thể tích tứ diện OABC bằng 3. 


A.
(P): 2x + 4y + 5z − 6 = 0 
B.
(P): 2x + 2y + 3z − 6 = 0 
C.
(P):  x + 4y − 3z + 6 = 0
D.
cả B và C
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi A(a;0;0);B(0;b;0) . Chỉ ra a và b khác 0 và pt (P) là \frac{x}{a}+\frac{y}{b}+\frac{z}{2} =1. Do K thuộc (P)

nên \frac{6}{a}-\frac{3}{b} =1

Chỉ ra thể tích tứ diện OABC là \frac{1}{3} │ab│= 3 nên ab = 9 hoặc ab =−9

Với ab = 9, ta tính được a =b = 3 hoặc a =−6;b -\frac{3}{2}

PT (P) là 2x + 2y + 3z − 6 = 0 hoặc x + 4y − 3z + 6 = 0 . 

Với ab =−9 tính ra vô nghiệm. 

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}