Skip to main content

Trong hệ tọa độ Oxy, cho đường tròn ( C ): x2 + y2 – 2x + 2y -23 = 0. Viết phương trình đường thẳng qua A(7 ;3) cắt ( C ) tại B, C sao cho AB – 3AC = 

Trong hệ tọa độ Oxy, cho đường tròn ( C ): x2 + y2

Câu hỏi

Nhận biết

Trong hệ tọa độ Oxy, cho đường tròn ( C ): x2 + y2 – 2x + 2y -23 = 0. Viết phương trình đường thẳng qua A(7 ;3) cắt ( C ) tại B, C sao cho AB – 3AC = 


A.
Phương trình ∆: y – 3 = 0 hoặc  -12x - 5y + 69 = 0
B.
Phương trình ∆: y – 3 = 0 hoặc  12x + 5y + 69 = 0
C.
Phương trình ∆: y + 3 = 0 hoặc  -12x + 5y + 69 = 0
D.
Phương trình ∆: y – 3 = 0 hoặc  -12x + 5y + 69 = 0
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi H là trung điểm của BC ( C ) có tâm I(1;-1), R = 5. Có AB.AC = AI2 – R2.

Suy ra 3AC2 = 27 ⇔ AC = 3, AB = 9 => AH = 6 => IH = 4.

Lập ∆ qua A(7;3) có \vec{n} = (a;b), a2 + b2 ≠0 cách I một đoạn bằng 4: a( x -7) + b( y – 3) = 0

 d(I, ∆) = 4 ⇔ | 3a + 2b| = 2\sqrt{a^{2}+b^{2}}\begin{bmatrix}a=0\\\left\{\begin{matrix}a=-12\\b=5\end{matrix}\right.\end{bmatrix}

Phương trình ∆: y – 3 = 0 hoặc  -12x + 5y + 69 = 0

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).