Skip to main content

Trong giờ Thể dục, tổ 1 lớp 12A có 12 học sinh gồm 7 học sinh nam và 5 học sinh nữ tập trung ngẫu nhiên theo một hàng dọc. Tính xác suất để người đứng đầu hàng và cuối hàng đều là học sinh nam.

Trong giờ Thể dục, tổ 1 lớp 12A có 12 học sinh gồm 7 học sinh nam và 5 học sinh nữ

Câu hỏi

Nhận biết

Trong giờ Thể dục, tổ 1 lớp 12A có 12 học sinh gồm 7 học sinh nam và 5 học sinh nữ tập trung ngẫu nhiên theo một hàng dọc. Tính xác suất để người đứng đầu hàng và cuối hàng đều là học sinh nam.


A.
P(A) = \frac{13}{21}
B.
P(A) = \frac{9}{22}
C.
P(A) = \frac{7}{22}
D.
P(A) = \frac{13}{22}
Đáp án đúng: C

Lời giải của Luyện Tập 365

- Số phần tử của không gian mẫu│Ω│= 12!

- Gọi A là biến cố: "Người đứng đầu hàng và cuối hàng của tổ 1 lớp 12A đều là học sinh nam" thì │ΩA│=A_{7}^{2}. 10!

- Xác suất để người đứng đầu hàng và cuối hàng của tổ 1, lớp 12A trong giờ thể dục đều là học sinh nam: P(A)= \frac{\left | \Omega _{A} \right |}{\left | \Omega \right |}=\frac{A_{7}^{2}.10!}{12!}=\frac{7}{22}

Câu hỏi liên quan

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx