Skip to main content

Tính giá trị của B nếu a = 6 + 2√5

Tính giá trị của B nếu a = 6 + 2√5

Câu hỏi

Nhận biết

Tính giá trị của B nếu a = 6 + 2√5


A.
B = \frac{\sqrt{5}-1}{2}
B.
B = \frac{\sqrt{5}-1}{4}
C.
B = \frac{\sqrt{5}+1}{2}
D.
B = \frac{\sqrt{5}+1}{4}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Nếu a = 6 + 2 √5 = (√5  +1)2

=> B = \frac{\sqrt{(\sqrt{5}+1)^{2}}}{6+2\sqrt{5}}=\frac{\sqrt{5}+1}{6+2\sqrt{5}}=\frac{(\sqrt{5}+1)(6-2\sqrt{5})}{36-20}

= \frac{\sqrt{5}-1}{4}

Câu hỏi liên quan

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2