Skip to main content

Tìm tập nghiệm của phương trình: sqrt{x} + sqrt{-x}= x+1

Tìm tập nghiệm của phương trình:

Câu hỏi

Nhận biết

Tìm tập nghiệm của phương trình:

sqrt{x} + sqrt{-x}= x+1


Đáp án đúng:

Lời giải của Luyện Tập 365

Nhận xét rằng:

* Với x=0 thì VT = 0 cò VP = 1, do đó x = 0 không là nghiệm.

* Với x<0 thì sqrt{x} không xác định.

* Với x>0 thì sqrt{-x} không xác định.

Vậy, phương trình có tập hợp nghiệm T = O

Câu hỏi liên quan

  • Xác định hàm số bậc hai  biết rằng đồ thị của nó cắt Oy tại điểm có tung độ -3 và đi

    Xác định hàm số bậc hai y=ax^{2}-4x+c biết rằng đồ thị của nó cắt Oy tại điểm có tung độ -3 và đi qua điểm M(-2;1).

  • Tìm tập xác định của hàm số sau;
a) 
b)
c) 

    Tìm tập xác định của hàm số sau;

    a) y=\frac{3}{x^{2}-9}

    b)y=\sqrt{x-1}+\frac{2}{\sqrt{3-x}}

    c) y=\frac{3}{\sqrt{3-\left | x \right |}}

  • Phần nâng cao

    Phần nâng cao

  • Dùng định nghĩa tính khoảng tăng giảm của hàm số:

    Dùng định nghĩa tính khoảng tăng giảm của hàm số:

    f(x)=frac{3}{x^{2}+1}

  • Cho góc  thỏa mãn  . Tính các giá trị lượng giác của 

    Cho góc \alpha \epsilon (0;\frac{\pi }{2}) thỏa mãn cot\alpha =\frac{1}{3} . Tính các giá trị lượng giác của \alpha

  • Dùng định nghĩa để tìm khoảng tăng giảm của hàm số:

    Dùng định nghĩa để tìm khoảng tăng giảm của hàm số:

    f(x)=-x^{2}+4x-1

  • . Cho tam giác ABC với A(-1;2);B(-2;5);C(0;-3).
a) Tính tọa độ trọng tâm G của tam giác

    . Cho tam giác ABC với A(-1;2);B(-2;5);C(0;-3).

    a) Tính tọa độ trọng tâm G của tam giác ABC.

    b) Tìm tọa độ điểm D sao cho tứ giác ADBC là hình bình hành

  • Giải và biện luận phương trình sau theo tham số m

     Giải và biện luận phương trình sau theo tham số m

    m^{2}(x+1)-1=(2-m)x

  • Cho a, b, c, d là các số thực dương. Chứng minh rằng:
         

    Cho a, b, c, d là các số thực dương. Chứng minh rằng:

             \frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\geq \frac{4}{3}

  • Dùng định nghĩa để xác định khoảng tăng giảm của hàm số sau:

    Dùng định nghĩa để xác định khoảng tăng giảm của hàm số sau:

    f(x)=sqrt{x^{2}+3}