Skip to main content

Tìm số thực m để phương trình sau có nghiệm z=i: z3-(3+i)z2+(3+4i)z+1-mi=0 Với giá trị m tìm được, hãy giải phương trình đã cho.

Tìm số thực m để phương trình sau có nghiệm z=i:z3-(3+i

Câu hỏi

Nhận biết

Tìm số thực m để phương trình sau có nghiệm z=i: z3-(3+i)z2+(3+4i)z+1-mi=0 Với giá trị m tìm được, hãy giải phương trình đã cho.


A.
Nghiệm  của phương trình là z=i,z=2-i, z=1+i
B.
Nghiệm  của phương trình là z=i,z=-2-i, z=1+i
C.
Nghiệm  của phương trình là z=i,z=2-i, z=-1+i
D.
Nghiệm  của phương trình là z=i,z=2+i, z=1+i
Đáp án đúng: A

Lời giải của Luyện Tập 365

Thay z=i vào phương trình ta có m=3. Khi đó phương trình trở thành 

z3-(3+i)z2+(3+4i)z+1-3i=0

⇔ (z-i)(z2-3z+3+i)=0 ⇔ \begin{bmatrix}z=i\\z^{2}-3z+3+i=0(*)\end{bmatrix}

Giải phương trình (*). Ta có ∆=9-4(3+i)=-3-4i=(1-2i)2

Suy ra (*)  ⇔ \begin{bmatrix}z=\frac{3+(1+2i)}{2}=2-i\\z=\frac{3-(1-2i)}{2}=1+i\end{bmatrix}

Vậy nghiệm  của phương trình là z=i,z=2-i, z=1+i

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).