Tìm số phức z thoả mãn: |z - 2 + i| = 2. Biết phần ảo nhỏ hơn phần thực 3 đơn vị.
Câu hỏi
Nhận biết
Tìm số phức z thoả mãn: |z - 2 + i| = 2. Biết phần ảo nhỏ hơn phần thực 3 đơn vị.
A.
z = 2-√2 + (-1-√2)i ; z = 2+√2 + (-1+√2)i
B.
z = 2 + (-1-√2)i ; z = 2 + (-1+√2)i
C.
z = -√2 + (-3-√2)i ; z = √2 + (-3+√2)i
D.
z = 2-2√2 + (-1-2√2)i ; z = 2+√2 + (-1+2√2)i
Đáp án đúng: A
Lời giải của Luyện Tập 365
Gọi số phức z = a+bi
Theo bài ra ta có:
<=>
<=> hoặc
Vậy số phức z cần tìm là:
z = 2-√2 + (-1-√2)i ; z = 2+√2 + (-1+√2)i
Câu hỏi liên quan
Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: ==, d':== và tạo với đường thẳng d một góc .
Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.
Cho hàm số y = a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).
Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.