Skip to main content

Tìm nghiệm trên khoảng (0;π) của phương trình  1+2cos^{2}(x-\frac{3\pi}{4})+\sqrt{3}cos2x=4sin^{2}\frac{x}{2}

Tìm nghiệm trên khoảng (0;π) của phương trình 1+2

Câu hỏi

Nhận biết

Tìm nghiệm trên khoảng (0;π) của phương trình  1+2cos^{2}(x-\frac{3\pi}{4})+\sqrt{3}cos2x=4sin^{2}\frac{x}{2}


A.
x=\frac{5\pi}{6}, x=\frac{5\pi}{18}, x=-\frac{17\pi}{18}
B.
x=\frac{5\pi}{6}, x=-\frac{5\pi}{18}, x=\frac{17\pi}{18}
C.
x=\frac{5\pi}{6}, x=\frac{5\pi}{18}, x=\frac{17\pi}{18}
D.
x=-\frac{5\pi}{6}, x=\frac{5\pi}{18}, x=\frac{17\pi}{18}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Phương trình đã cho tương đương với 

1+1+cos(2x-\frac{3\pi}{2})+√3cos2x=2(1-cosx)

⇔2-sin2x+√3cos2x=2-2cosx ⇔ -sin2x+√3cos2x=-2cosx

⇔ -\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x=cosx ⇔ cos(2x-\frac{5\pi}{6})=cosx

\begin{bmatrix}2x-\frac{5\prod}{6}=x+k2\prod\\2x-\frac{5\prod}{6}=-x+k2\prod\end{bmatrix}\begin{bmatrix}x=\frac{5\prod}{6}+k2\prod\\x=\frac{5\prod}{18}+k\frac{2\prod}{3},k\in Z\end{bmatrix}

Suy ra nghiệm thuộc khoảng (0,π) là x=\frac{5\pi}{6},x=\frac{5\pi}{18},x=\frac{17\pi}{18}

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?