Skip to main content

So sánh: Trả lời câu hỏi dưới đây:√3 + √5 và √15 

So sánh:            Trả lời câu hỏi dưới đây:√3 + √5 và √15 

Câu hỏi

Nhận biết

So sánh:

Trả lời câu hỏi dưới đây:

√3 + √5 và √15 


A.
√3 + √5 > √15 
B.
√3 + √5 < √15 
C.
√3 + √5 = √15 
D.
Không có cơ sở so sánh.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: 

(√3 + √5)= 8 + 2√15 = 8 + √60       

(√15)2 = 8 + 7 = 8 + √49

Do 8 + √60 > 8 + √49. Vậy (√3 + √5)> (√15)2

Suy ra: √3 + √5 > √15 

Câu hỏi liên quan

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .