Skip to main content

Một tam giác đều ABC nội tiếp đường tròn (O) đường kính AD = 6,0 cm. Gọi I là giao điểm của hai đường thẳng BD và AC. Trên tia IC lấy điểm N sao cho IN = IB; đường thẳng BN cắt đường tròn tại điểm thứ hai M. Trả lời câu hỏi dưới đây:Các tam giác BIN và BMD là tam giác gì?

Một tam giác đều ABC nội tiếp đường tròn (O) đường kính AD = 6,0 cm. Gọi I là giao điểm

Câu hỏi

Nhận biết

Một tam giác đều ABC nội tiếp đường tròn (O) đường kính AD = 6,0 cm. Gọi I là giao điểm của hai đường thẳng BD và AC. Trên tia IC lấy điểm N sao cho IN = IB; đường thẳng BN cắt đường tròn tại điểm thứ hai M.

Trả lời câu hỏi dưới đây:

Các tam giác BIN và BMD là tam giác gì?


A.
Tam giác thường 
B.
Tam giác cân
C.
Tam giác đều
D.
Tam giác vuông
Đáp án đúng: B

Lời giải của Luyện Tập 365

IB = IN (gt)   =>  ∆ BIN cân

Dễ dàng chứng minh được \widehat{I}=30^{\circ}

=> \widehat{MBD}=75^{\circ}=\widehat{BNC}

=> \widehat{BDM}=75^{\circ}   => ∆ BMD cân

Câu hỏi liên quan

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.