Skip to main content

Một nhóm xạ thủ gồm 10 người trong đó có 3 xạ thủ loại I và 7 xạ thủ loại II. Xác suất bắn trúng đích trong mỗi lần bắn của mỗi xạ thủ loại I và loại II lần lượt là 0,9 và 0,8. Chọn ngẫu nhiên một xạ thủ trong 10 người và cho bắn 1 viên đạn. Tính xác suất để viên đạn trúng đích.

Một nhóm xạ thủ gồm 10 người trong đó có 3 xạ thủ loại I và 7 xạ thủ loạ

Câu hỏi

Nhận biết

Một nhóm xạ thủ gồm 10 người trong đó có 3 xạ thủ loại I và 7 xạ thủ loại II. Xác suất bắn trúng đích trong mỗi lần bắn của mỗi xạ thủ loại I và loại II lần lượt là 0,9 và 0,8. Chọn ngẫu nhiên một xạ thủ trong 10 người và cho bắn 1 viên đạn. Tính xác suất để viên đạn trúng đích.


A.
Xác suất viên đạn trúng đích là 0,83.
B.
Xác suất viên đạn trúng đích là 0,82.
C.
Xác suất viên đạn trúng đích là 0,84.
D.
Xác suất viên đạn trúng đích là 0,86.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi H: " Viên đạn trúng đích",

A1: "Chọn được xạ thủ loại I"

A2: "Xạ thủ loại I bắn trúng đích"

B1: "Chọn được xạ thủ loại II"

B2: "Xạ thủ loại II bắn trúng đích"

Khi đó H = A1A2 ∪ B1B2, trong đó A1 và A2, B1 và B2 độc lập, A1A2 và B1B2 xung khắc.

Áp dụng quy tắc cộng và quy tắc nhân xác suất ta có

P(H) = P(A1A2) + P(B1B2) = P(A1)P(A2) + P(B1)P(B2) = \frac{C_{3}^{1}}{C_{10}^{1}} X 0,9 + \frac{C_{7}^{1}}{C_{10}^{1}} X 0,8=0,83.

Vậy xác suất viên đạn trúng đích là 0,83.



Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.