Skip to main content

Gọi giao điểm của các đường thẳng AM và SQ là R'. Cho biết tứ giác OMR'P là hình bình hành. Tính OS theo R.

Gọi giao điểm của các đường thẳng AM và SQ là R'. Cho biết tứ giác OMR'P là hình bình hành.

Câu hỏi

Nhận biết

Gọi giao điểm của các đường thẳng AM và SQ là R'. Cho biết tứ giác OMR'P là hình bình hành. Tính OS theo R.


A.
OS=(R-1)\sqrt{2}
B.
OS=(R+1)\sqrt{3}
C.
OS=(R+1)\sqrt{2}
D.
OS=(R-1)\sqrt{3}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi giao điểm của tia OP với QS là P', ta có P'S = P'Q. Do PP' // MR'  nên \frac{QP'}{QR'}=\frac{PP'}{MR'}     (1). Mặt khác, do OMR'P  là hình bình hành nên PR' // MS; PP' // MR'  và ∆ PP'R' ~ ∆ MR'S   (t.h 2)

Suy ra \frac{PP'}{MR'}=\frac{P'R'}{R'S}     (2)

Kết hợp (2) với (1) ta được  \frac{QP'}{QR'}=\frac{P'R'}{R'S}    (3)

Do QP' = P'S = P'R' + R'S  nên thay vào (3) và biến đổi ta được R'S = P'R'\sqrt{2}

Vậy \frac{SM}{OM}=\frac{SR'}{R'P'}=\sqrt{2}  nên SM=R\sqrt{2} ; OS=(R+1)\sqrt{2}

Câu hỏi liên quan

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0