Skip to main content

Gọi chung điểm của BH là K. Chứng minh rằng đường thẳng KM luôn luôn đi qua một điểm cố định.

Gọi chung điểm của BH là K. Chứng minh rằng đường thẳng KM luôn luôn đi qua một điểm cố

Câu hỏi

Nhận biết

Gọi chung điểm của BH là K. Chứng minh rằng đường thẳng KM luôn luôn đi qua một điểm cố định.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Xét giao điểm P của MK với cung AB. Vì tam giác MHB cân đỉnh M nên MK vừa là trung tuyến (do KB = KH) vừa là phân giác, do đó \widehat{KMB}=45^{\circ} .

Ta cósđ cung PB = 2\widehat{KMB} = 90°

Vậy P là điểm chính giữa cung AB và do đó cố định (P chính là tâm của cung (\alpha) vì PH1 = PB = PA).

Câu hỏi liên quan

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tìm b để A =

    Tìm b để A = frac{5}{2}