Skip to main content

Giải hệ phương trình trên tập số thực: \left\{\begin{matrix} x^{2}-16y^{2}-2x-4y+13=0\\log_{3}(3x+2y)-log_{27}(3x-2y)^{3}=1 \end{matrix}\right.

Giải hệ phương trình trên tập số thực:

Câu hỏi

Nhận biết

Giải hệ phương trình trên tập số thực: \left\{\begin{matrix} x^{2}-16y^{2}-2x-4y+13=0\\log_{3}(3x+2y)-log_{27}(3x-2y)^{3}=1 \end{matrix}\right.


A.
(x;y)=(1;\frac{3}{4})
B.
(x;y)=(2;1)
C.
(x;y)=(1;0)
D.
(x;y)=(5;\frac{3}{4})
Đáp án đúng: A

Lời giải của Luyện Tập 365

Điều kiện \left\{\begin{matrix} 3x+2y>0\\3x-2y>0 \end{matrix}\right.

Từ phương trình thứ 2 của hệ ta có:

log3(3x+2y) – log27(3x-2y)3=1

<=> log3(3x+2y)- log3(3x-2y)=1

<=>log3(\frac{3x+3y}{3x-2y}) =1

<=> \frac{3x+3y}{3x-2y} =3 

<=> 3x+2y=9x-6y <=> 6x=8y <=> y=\frac{3x}{4}.

Thay y=\frac{3x}{4} vào phương trình thứ nhất của hệ ta có:

x2-9x2-2x-3x+13=0

<=> 8x2+5x-13=0 <=> x=1 hoặc x=\frac{-13}{8}

Với x=\frac{-13}{8} => y=\frac{-39}{32} (không thỏa mãn điều kiện)

Với x=1 => y=\frac{3}{4} (thỏa mãn)

Vậy hệ có nghiệm duy nhất: (x;y)=(1;\frac{3}{4})

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.