Skip to main content

Giải hệ phương trình \left\{\begin{matrix} 4^{x}+2^{x+1}log_{3} y=3\\2^{x}+log_{3} y.log_{3} 3y=3 \end{matrix}\right. (x,y∈R)

Giải hệ phương trình

Câu hỏi

Nhận biết

Giải hệ phương trình \left\{\begin{matrix} 4^{x}+2^{x+1}log_{3} y=3\\2^{x}+log_{3} y.log_{3} 3y=3 \end{matrix}\right. (x,y∈R)


A.
(x;y)=(0;3) hoặc (x;y)=(log_{2}^{3}\frac{1}{3}).
B.
(x;y)=(1;2) hoặc (x;y)=(3; \frac{1}{3}).
C.
(x;y)=(3;1) hoặc (x;y)=(log_{2}^{3}; 2).
D.
(x;y)=(2;3) hoặc (x;y)=(2; 1).
Đáp án đúng: A

Lời giải của Luyện Tập 365

Điều kiện: y>0

Đặt u=2^{x}, v=log_{3}y. Khi đó u>0 và hệ trở thành

\left\{\begin{matrix} u^{2}+2uv=3\\u+v(v+1)=3 \end{matrix}\right. <=> \left\{\begin{matrix} u^{2}+2uv=3\\v^{2}+u+v=3 \end{matrix}\right.

Cộng hải vế phương trình của hẹ ta được:

u2+2uv+v2+u+v=6 <=> (u+v)2 + (u+v)– 6 =0 <=> \begin{bmatrix} u+v=2\\u+v=-3 \end{bmatrix}

* Với u+v=2 ta có v2=1. Suy ra \begin{bmatrix} u=1,v=1\\u=3 ,v=-1 \end{bmatrix} 

Suy ra \begin{bmatrix} x=0, y=3\\x=log_{2}3 ,y=\frac{1}{3} \end{bmatrix}

* Với u+v=-3 ta có v2=6. Suy ra \begin{bmatrix} u=1, v=1\\u=-3+\sqrt{6}, v=-3-\sqrt{6} \end{bmatrix} (ktm)

Vậy nghiệm (x;y) cảu hệ là (0,3), (log_{2}3;\frac{1}{3})

Câu hỏi liên quan

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx