Skip to main content

Giải hệ phương trình: \left\{\begin{matrix} x^{2}\sqrt{y+1}-2xy-2x=1\\x^{3}-3x-3xy=6 \end{matrix}\right. (x,y∈ R)

Giải hệ phương trình:

Câu hỏi

Nhận biết

Giải hệ phương trình: \left\{\begin{matrix} x^{2}\sqrt{y+1}-2xy-2x=1\\x^{3}-3x-3xy=6 \end{matrix}\right. (x,y∈ R)


A.
(x;y)=(3\sqrt{2}; 1-\sqrt{2})
B.
(x;y)=(\sqrt[3]{9};\frac{1}{\sqrt[3]{9}}-1)
C.
(x;y)=(\sqrt[3]{9}-1;2\sqrt{3})
D.
(x;y)=(2\sqrt{2}; 2\sqrt{3})
Đáp án đúng: B

Lời giải của Luyện Tập 365

Đặt z=\sqrt{y+1}, z≥0 hệ trở thành \left\{\begin{matrix} x^{2}z-2xz^{2=1}\\x^{3}-3xz^{2}=6 \end{matrix}\right.

Rõ ràng z=0 không thỏa mãn hệ

Với z>0, đặt x=tz hệ đã cho trở thành \left\{\begin{matrix} z^{3}(t^{2}-2t)=1\\z^{3}(t^{3}-3t)=6 \end{matrix}\right.

Suy ra \frac{t^{2}-2t}{t^{3}-3t}=\frac{1}{6}, hay t=3.

Từ đo ta có nghiệm của hệ x=\sqrt[3]{9}, y=\frac{1}{\sqrt[3]{9}}-1.

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?