Skip to main content

Giải các hệ phương trình sau bằng phương pháp thế: Trả lời câu hỏi dưới đây:\left\{\begin{matrix} \frac{1}{3}v-\frac{1}{8}u=3\\ 7u+9v=-2 \end{matrix}\right.

Giải các hệ phương trình sau bằng phương pháp thế:            Trả lời câu hỏi dưới đây

Câu hỏi

Nhận biết

Giải các hệ phương trình sau bằng phương pháp thế:

Trả lời câu hỏi dưới đây:

\left\{\begin{matrix} \frac{1}{3}v-\frac{1}{8}u=3\\ 7u+9v=-2 \end{matrix}\right.


A.
(u,; v) = (-8;-4)
B.
(u,; v) = (-8; 6)
C.
(u,; v) = (8; 6)
D.
(u,; v) = (-8; 4)
Đáp án đúng: B

Lời giải của Luyện Tập 365

\left\{\begin{matrix} \frac{1}{3}v-\frac{1}{8}u=3\\ 7u+9v=-2 \end{matrix}\right. 

<=> \left\{\begin{matrix} -3u+8v=72\\ 7u+9v=-2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} v=9+\frac{3}{8}u\\ 7u+9(9+\frac{3}{8}u)=-2 \end{matrix}\right.

<=> \left\{\begin{matrix} v=9+\frac{3}{8}u\\ u=-8 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} u=-8\\ v=6 \end{matrix}\right.

Kết luận: (u,; v) = (-8; 6)

Câu hỏi liên quan

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông