Skip to main content

Điểm B1, C1 lần lượt là trung điểm của cung AB, AC (h.2c). Gọi M, N lần lượt là giao điểm của B1Cvới AB, AC. Chứng minh rằng AM = AN.

Điểm B1, C1 lần lượt là trung điểm của cung AB, AC (h.2c). Gọi M, N lần lượt là giao điểm

Câu hỏi

Nhận biết

Điểm B1, C1 lần lượt là trung điểm của cung AB, AC (h.2c). Gọi M, N lần lượt là giao điểm của B1Cvới AB, AC. Chứng minh rằng AM = AN.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: \widehat{ANM} = \widehat{AC_1B_{1}}\widehat{C_1AC} (góc ngoài của tam giác ANC1)

\widehat{AMN} = \widehat{B_1C_1B} + \widehat{ABC_1} (góc ngoài của tam giác BMC1)

Lại có AB= BB1 (Do Blà trung điểm của cung AB)

AC= CC(Do C1 là trung điểm của cung AC)

=>  \widehat{AC_1B_{1}}\widehat{B_1C_1B}\widehat{C_1AC} = \widehat{ABC_1} (2 góc chắn hai dây cung bằng nhau)

=> \widehat{ANM} = \widehat{AMN} => ∆ AMN cân => AM = AN.

Câu hỏi liên quan

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A