Skip to main content

Chứng minh: Trong 5 số nguyên tố bất kỳ luôn luôn chọn được 3 số có tổng chia hết cho 3.

Chứng minh: Trong 5 số nguyên tố bất kỳ luôn luôn chọn được 3 số có tổng chia hết cho

Câu hỏi

Nhận biết

Chứng minh: Trong 5 số nguyên tố bất kỳ luôn luôn chọn được 3 số có tổng chia hết cho 3.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Xét 1 số khi chia cho 3 sẽ có 3 trường hợp:

Chia 3 dư 1

Chia 3 dư 2

Chia hết cho 3

Nhận thấy chỉ có một số nguyên tố chia hết cho 3 đó là số 3 nên ta xét 2 trường hợp có 3 và không có 3.

* Với trường hợp không có 3

Số nguyên tố chia 3 sẽ có 2 số dư là 1 hoặc 2, nhận thấy 5 = 2.2 + 1 nên tồn tại 3 số chia cho 3 có cùng 1 số dư tổng của 3 số này chia hết cho 3.

* Với trường hợp có 3

Chọn số thứ nhất là 3 còn lại 4 số nguyên tố nếu có 1 số chia 3 dư 2 và 1 số chia cho 3 dư 1 ta chọn 2 số đó và số 3 nếu có nhiều hơn 3 số chia 3 có cùng 1 số dư ta cho 3 trong các số đó.

Vậy với 5 số nguyên tố bất kì lúc nào cũng chọn được 3 số mà tổng của chúng chia hết cho 3.

Câu hỏi liên quan

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Rút gọn A

    Rút gọn A