Skip to main content

Chứng minh rằng các số A, B đều không phải là các số nguyên.

Chứng minh rằng các số A, B đều không phải là các số nguyên.

Câu hỏi

Nhận biết

Chứng minh rằng các số A, B đều không phải là các số nguyên.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: 2 < √6  < A < \sqrt{6+\sqrt{6+....+\sqrt{6+3}}} = 3

và 1 < \sqrt[3]{6}  < B < \sqrt[3]{6+\sqrt[3]{6}+...+\sqrt[3]{6+2}}  = 2

Từ đó suy ra điều cần chứng minh.

Câu hỏi liên quan

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}