Skip to main content

Chứng minh MN là tia phân giác của góc AMB và đường thẳng MN luôn luôn đi qua một điểm K cố định

Chứng minh MN là tia phân giác của góc AMB và đường thẳng MN luôn luôn đi qua một điểm K

Câu hỏi

Nhận biết

Chứng minh MN là tia phân giác của góc AMB và đường thẳng MN luôn luôn đi qua một điểm K cố định


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Trong đường tròn (E) do CD // AB nên cung CN = Cung ND vì thế \widehat{NMC}=\widehat{NMD}

MN cắt đường tròn (O) ở K thế thì \widehat{KMA}=\widehat{KMB} , do đó cung KA = cung KB

Vậy điểm K cố định

Câu hỏi liên quan

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k