Skip to main content

Chứng minh HAD cắt đường tròn ngoại tiếp ∆ ABC tại F. Chứng minh FBC là tam giác vuông cân

Chứng minh HAD cắt đường tròn ngoại tiếp ∆ ABC tại F. Chứng minh FBC là tam giác vuông

Câu hỏi

Nhận biết

Chứng minh HAD cắt đường tròn ngoại tiếp ∆ ABC tại F. Chứng minh FBC là tam giác vuông cân


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Tam giác FBC vuông tại F, lại có \widehat{FBC}=\widehat{FAC}=45^{\circ} ; do đó ∆ FBC vuông cân tại đỉnh F.

Câu hỏi liên quan

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Rút gọn A

    Rút gọn A

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Rút gọn biểu thức A

    Rút gọn biểu thức A