Skip to main content

Chứng minh bất đẳng thức sau: (\sqrt[3]{\sqrt{9+4\sqrt{5}}}+\sqrt[3]{2+\sqrt{5}}).\sqrt[3]{\sqrt{5}-2}-2,1   < 0

Chứng minh bất đẳng thức sau:
   < 0

Câu hỏi

Nhận biết

Chứng minh bất đẳng thức sau:

(\sqrt[3]{\sqrt{9+4\sqrt{5}}}+\sqrt[3]{2+\sqrt{5}}).\sqrt[3]{\sqrt{5}-2}-2,1   < 0


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Biến đổi vế trái:

     (\sqrt[3]{\sqrt{(2+\sqrt{5})^{2}}}+\sqrt[3]{2+\sqrt{5}}).\sqrt[3]{\sqrt{5}-2}-2,1

=(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{\sqrt{5}+2}).\sqrt[3]{\sqrt{5}-2}-2,1

= 2\sqrt[3]{(\sqrt{5})^{2}-2^{2}} - 2,1 = 2 - 2,1 = - 0,1 < 0

Bất đẳng thức được chứng minh.

Câu hỏi liên quan

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Rút gọn A

    Rút gọn A

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.