Skip to main content

Cho ∆ABC có ba góc nhọn và AB = AC. Đường tròn tâm O đường kính AB = 2R cắt các cạnh BC, AC lần lượt tại I, K. Tiếp tuyến của đường tròn (O) tại B cắt AI tại  D, H là giao điểm của AI và BK. Trả lời câu hỏi dưới đây: Chứng minh tứ giác IHKC nội tiếp.

Cho ∆ABC có ba góc nhọn và AB = AC. Đường tròn tâm O đường kính AB = 2R cắt các cạn

Câu hỏi

Nhận biết

Cho ∆ABC có ba góc nhọn và AB = AC. Đường tròn tâm O đường kính AB = 2R cắt các cạnh BC, AC lần lượt tại I, K. Tiếp tuyến của đường tròn (O) tại B cắt AI tại  D, H là giao điểm của AI và BK.

Trả lời câu hỏi dưới đây:

Chứng minh tứ giác IHKC nội tiếp.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có  = 900 (góc nội tiếp chắn nửa đường tròn)

=>AI ⊥BC => = 900 và  = 900 (góc nội tiếp chắn nửa đường tròn)

=>BK ⊥ AC => = 900

Tứ giác IHKC có = 1800

Do đó tứ giác IHKC nội tiếp.

 

Câu hỏi liên quan

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha