Skip to main content

Cho x = \frac{(\sqrt{3}-1).\sqrt[3]{10+6\sqrt{3}}}{\sqrt{21+4\sqrt{5}+3}}, tính giá trị của biểu thức P = (x2 + 4x – 2)2013

Cho x = , tính giá trị của biểu thức
P = (x2 + 4x – 2)2013

Câu hỏi

Nhận biết

Cho x = \frac{(\sqrt{3}-1).\sqrt[3]{10+6\sqrt{3}}}{\sqrt{21+4\sqrt{5}+3}}, tính giá trị của biểu thức

P = (x2 + 4x – 2)2013


A.
 P = 0
B.
 P = -1
C.
 P = -2
D.
 P = -3
Đáp án đúng: B

Lời giải của Luyện Tập 365

x = \frac{(\sqrt{3}-1).\sqrt[3]{10+6\sqrt{3}}}{\sqrt{21+4\sqrt{5}+3}} = \frac{(\sqrt{3}-1).\sqrt[3]{(\sqrt{3+1})^{3}}}{\sqrt{(\sqrt{20}+1)^{2}+3}}

\frac{(\sqrt{3}-1)(\sqrt{3}+1)}{\sqrt{20}+4} = \frac{2}{2(\sqrt{5}+2)} = √5 - 2

=> x2 + 4x – 1 = 0 => P = -1

Câu hỏi liên quan

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên