Skip to main content

Cho tam giác vuông ABC (\widehat{A}=90^{\circ}). Về phía ngoài tam giác dựng các hình vuông ABHK, ACDE. Trả lời câu hỏi dưới đây:Giả sử \widehat{ABC}  > 45° . Gọi M là giao điểm của BF và ED. Chứng minh 5 điểm B, K, E, M, C cùng nằm trên một đường tròn.

Cho tam giác vuông ABC (). Về phía ngoài tam giác dựng các hình vuông ABHK, ACDE.

Câu hỏi

Nhận biết

Cho tam giác vuông ABC (\widehat{A}=90^{\circ}). Về phía ngoài tam giác dựng các hình vuông ABHK, ACDE.

Trả lời câu hỏi dưới đây:

Giả sử \widehat{ABC}  > 45° . Gọi M là giao điểm của BF và ED. Chứng minh 5 điểm B, K, E, M, C cùng nằm trên một đường tròn.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

\widehat{MEC}=\widehat{MBC}=45^{\circ} , tứ giác MEBC nội tiếp được một đường tròn.

\widehat{BKC}=\widehat{BEC}=45^{\circ}  , tứ giác BKEC nội tiếp được một đường tròn.

Hai đường tròn trên cùng đi qua ba điểm B, E, C nên trùng nhau. Vậy 5 điểm B, K, E, C, M thuộc một đường tròn.

Câu hỏi liên quan

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Rút gọn A

    Rút gọn A

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.