Skip to main content

Cho tam giác ABC cân (AB = AC) có ba đỉnh nằm trên đường tròn (O) và một điểm M bất kì trên cung nhỏ AC. Tia Bx vuông góc với AM cắt tia CM tại D. Trả lời câu hỏi dưới đây:Chứng minh \widehat{AMD} = \widehat{ABC}

Cho tam giác ABC cân (AB = AC) có ba đỉnh nằm trên đường tròn (O) và một điểm M bất kì trên

Câu hỏi

Nhận biết

Cho tam giác ABC cân (AB = AC) có ba đỉnh nằm trên đường tròn (O) và một điểm M bất kì trên cung nhỏ AC. Tia Bx vuông góc với AM cắt tia CM tại D.

Trả lời câu hỏi dưới đây:

Chứng minh \widehat{AMD} = \widehat{ABC}


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

=> \widehat{AMD} = \widehat{ABC}

Câu hỏi liên quan

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Tìm b để A =

    Tìm b để A = frac{5}{2}