Skip to main content

Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm chính giữa cung AB, M là một điểm bất kì trên cung AC. Tia phân giác của góc COM cắt BM tại điểm D. Chứng minh rằng khi điểm M di động trên cung AC thì điểm D thuộc một đường tròn cố định

Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm chính giữa cung AB, M là một điểm bất

Câu hỏi

Nhận biết

Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm chính giữa cung AB, M là một điểm bất kì trên cung AC. Tia phân giác của góc COM cắt BM tại điểm D. Chứng minh rằng khi điểm M di động trên cung AC thì điểm D thuộc một đường tròn cố định


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có \widehat{CBM} = \frac{1}{2}\widehat{COM} = \widehat{COD} (góc nội tiếp và góc ở tâm, OD là tia phân giác của \widehat{COM})

Xét tứ giác BCFO, ta có \widehat{CBD} = \widehat{COD} (cmt), O và B nằm cùng một nửa mặt phẳng bớ CD => O, B cùng thuộc một cung chứa góc dựng trên đoạn OB. Do đó tứ giác BCDO nội tiếp

Lại có \widehat{BOC} = 900. (vì cung CA = cung CB => OC ⊥ AB)

Vậy tứ giác BCDO nội tiếp đường tròn đường kính BC, mà BC cố định nên D thuộc đường tròn cố định đường kính BC (cung OC hình vẽ)

Câu hỏi liên quan

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a