Skip to main content

Cho một hình chữ nhật ABCD, AB = b, BC = b\sqrt{2} . Từ A kẻ đường thẳng vuông góc với BD cắt BC và BD theo thứ tự tại M và N. Trả lời câu hỏi dưới đây:Tính độ dài các đoạn thẳng BD và BN.

Cho một hình chữ nhật ABCD, AB = b, BC =  . Từ A kẻ đường thẳng vuông góc với BD cắt

Câu hỏi

Nhận biết

Cho một hình chữ nhật ABCD, AB = b, BC = b\sqrt{2} . Từ A kẻ đường thẳng vuông góc với BD cắt BC và BD theo thứ tự tại M và N.

Trả lời câu hỏi dưới đây:

Tính độ dài các đoạn thẳng BD và BN.


A.
BD=b\sqrt{3}   và BN=\frac{b}{\sqrt{3}}
B.
BD=b\sqrt{3}   và BN = B
C.
BD=b\sqrt{3}   và  BN=b\sqrt{3}
D.
BD=b\sqrt{3}   và  BN=\frac{b\sqrt{3}}{2}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có 

BD2 = BC2 + CD2 = (b\sqrt{2})^{2}+b^{2}=3b^{2}   

=> BD=b\sqrt{3}

Trong tam giác vuông ABD ta có:

AB^{2}=BN.BD    => BN=\frac{AB^{2}}{BD}=\frac{b^{2}}{b\sqrt{3}}=\frac{b}{\sqrt{3}}

Câu hỏi liên quan

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Rút gọn A

    Rút gọn A

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.