Skip to main content

Cho hình lăng trụ dứng ABC.A'B'C' có đáy là tam giác vuông cân, BA = BC = BB' = a. Gọi M, N  lần lượt là trung điểm của A'B' bà BC. Điểm P nằm trên đoạn thẳng BB' sao cho BP = 2B'P. Chứng minh rằng (MCC') vuông góc với (MNP) và tính thể tích khối chóp CC'MP.

Cho hình lăng trụ dứng ABC.A'B'C' có đáy là tam giác vuông cân, BA = BC

Câu hỏi

Nhận biết

Cho hình lăng trụ dứng ABC.A'B'C' có đáy là tam giác vuông cân, BA = BC = BB' = a. Gọi M, N  lần lượt là trung điểm của A'B' bà BC. Điểm P nằm trên đoạn thẳng BB' sao cho BP = 2B'P. Chứng minh rằng (MCC') vuông góc với (MNP) và tính thể tích khối chóp CC'MP.


A.
\frac{a^{3}}{12}
B.
\frac{a^{3}}{4}
C.
\frac{a^{3}}{\sqrt{2}}
D.
\frac{a^{3}}{2}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi I là giao điểm của NP và B'C'. Khi đó B'I = \frac{1}{2}BN = \frac{a}{4}

Áp dụng định lý Pitago cho các tam giác MB'I, MB'C' ta có

MI = \sqrt{B'I^{2}+B'M^{2}} = \sqrt{\frac{a^{2}}{16}+\frac{a^{2}}{4}} = \frac{a\sqrt{5}}{4}

MC = \sqrt{B'M^{2}+B'C'^{2}} = \sqrt{\frac{a^{2}}{4}+a^{2}} = \frac{a\sqrt{5}}{2}

Ta có

MI2 + MC2\frac{5a^{2}}{16} + \frac{5a^{2}}{4} = \frac{25a^{2}}{16} = IC’2  

Do đó tam giác IMC vuông tại M. Suy ra IM ⊥ MC

Kết hợp với IM ⊥ CC' suy ra IM ⊥ (MCC')

Từ đó ta có (MNP) ⊥ (MCC').

Ta có

VCC’MP\frac{1}{3} d(M , (BCC'B')).SPCC’  

\frac{1}{3} . MB'.\dpi{100} \frac{1}{2}BC.CC' = \frac{1}{6} . \frac{a}{2} .a.a = \frac{a^{3}}{12} (đvtt)

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.