Skip to main content

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = b, AA' = c. Gọi M là trung điểm của B'C'. Mặt phẳng (MAC) chia khối lập phương thành hai phần. Tính thể tích mỗi phần theo a, b, c.

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = b, AA' = c. Gọi M là

Câu hỏi

Nhận biết

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = b, AA' = c. Gọi M là trung điểm của B'C'. Mặt phẳng (MAC) chia khối lập phương thành hai phần. Tính thể tích mỗi phần theo a, b, c.


A.
V\frac{1}{6}abc +  \frac{3}{2}abc = \frac{7}{24}abc (đvtt);  V= V - V\frac{17}{24}abc (đvtt)
B.
V\frac{1}{6}abc +  \frac{1}{8}abc = \frac{6}{27}abc (đvtt);  V= V - V\frac{17}{24}abc (đvtt)
C.
V\frac{1}{6}abc +  \frac{1}{8}abc = \frac{7}{24}abc (đvtt);  V= V - V\frac{17}{27}abc (đvtt)
D.
V\frac{1}{6}abc +  \frac{1}{8}abc = \frac{7}{24}abc (đvtt);  V= V - V\frac{17}{24}abc (đvtt)
Đáp án đúng:

Lời giải của Luyện Tập 365

Gọi N là trung điểm của A'B' ta có MN song song với A'C' nên MN song song với AC. Suy ra N ∈ (MAC). Gọi V1 là thể tích của khối đa diện ABCMNB' và V2 là thể tích khối ACDNMC'D'A'.

Ta có:

V1 = VN.ABC + VN.BCMB’

 VN.ABC =  \frac{1}{3} BB’.S_{\Delta ABC } = \frac{1}{6}abc.

VN.BCMB’\frac{1}{3} NB'.SBCMB’\frac{1}{3} NB' . \frac{3}{4} SBCC’B’\frac{1}{8}abc.

Suy ra V\frac{1}{6}abc +  \frac{1}{8}abc = \frac{7}{24}abc.

Do thể tích của khối hộp đã cho là: V = abc nên V2 = V - V\frac{17}{24}abc (đvtt)

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.