Skip to main content

Cho hình chóp tam giác SABC có SA = a (0 < a < √2), các cạnh còn lại đều bằng 1. Tính thể tích của khối chóp theo a

Cho hình chóp tam giác SABC có SA = a (0 < a < √2), các cạnh còn l

Câu hỏi

Nhận biết

Cho hình chóp tam giác SABC có SA = a (0 < a < √2), các cạnh còn lại đều bằng 1. Tính thể tích của khối chóp theo a


A.
VS.ABC = \sqrt{3-a^{2}}
B.
VS.ABC\frac{a}{4}\sqrt{3-a^{2}}
C.
VS.ABC = \frac{a}{12}\sqrt{3-a^{2}}
D.
VS.ABC = \frac{a}{12}\sqrt{a^{2}-3}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi I, J là trung điểm SA, BC

Vì ∆SAC cân tại C nên SA vuông IC, ∆SAB cân tại B nên SA vuông IB

=> SA vuông (IBC)

Khi đó: VS.ABC = 1/3 . SIBC. SA

Có IB =  \sqrt{AB^{2}-IA^{2}}  = \sqrt{1-\frac{a^{2}}{4}}  , BJ = \frac{1}{2} , IJ = \sqrt{IB^{2}-BJ^{2}} 

\sqrt{1-\frac{a^{2}+1}{4}}

=> SIBC \frac{1}{2} BC.IJ = \frac{1}{2} \sqrt{1-\frac{a^{2}+1}{4}}

VS.ABC = 1/3 .SIBC.SA = \frac{a}{6}  \sqrt{1-\frac{a^{2}+1}{4}}\frac{a}{12}\sqrt{3-a^{2}}  (đvtt).

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}