Skip to main content

Cho hình chóp tam giác SABC có SA = a (0 < a < √2), các cạnh còn lại đều bằng 1. Tính thể tích của khối chóp theo a

Cho hình chóp tam giác SABC có SA = a (0 < a < √2), các cạnh còn l

Câu hỏi

Nhận biết

Cho hình chóp tam giác SABC có SA = a (0 < a < √2), các cạnh còn lại đều bằng 1. Tính thể tích của khối chóp theo a


A.
VS.ABC = \sqrt{3-a^{2}}
B.
VS.ABC\frac{a}{4}\sqrt{3-a^{2}}
C.
VS.ABC = \frac{a}{12}\sqrt{3-a^{2}}
D.
VS.ABC = \frac{a}{12}\sqrt{a^{2}-3}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi I, J là trung điểm SA, BC

Vì ∆SAC cân tại C nên SA vuông IC, ∆SAB cân tại B nên SA vuông IB

=> SA vuông (IBC)

Khi đó: VS.ABC = 1/3 . SIBC. SA

Có IB =  \sqrt{AB^{2}-IA^{2}}  = \sqrt{1-\frac{a^{2}}{4}}  , BJ = \frac{1}{2} , IJ = \sqrt{IB^{2}-BJ^{2}} 

\sqrt{1-\frac{a^{2}+1}{4}}

=> SIBC \frac{1}{2} BC.IJ = \frac{1}{2} \sqrt{1-\frac{a^{2}+1}{4}}

VS.ABC = 1/3 .SIBC.SA = \frac{a}{6}  \sqrt{1-\frac{a^{2}+1}{4}}\frac{a}{12}\sqrt{3-a^{2}}  (đvtt).

Câu hỏi liên quan

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?