Skip to main content

Cho hình chóp S, đáy ABCD là hình chữ nhật cạnh AB = a, AD = 2a hai mặt bên (SAB) và (SAD) cùng vuông góc với đáy. Cho SA = a√3, trên SA lấy 1 điểm I sao cho SI = \frac{2a\sqrt{3}}{3}. Gọi K là giao điểm của SD với mặt phẳng (BCI). Tính thể tích khối chóp S.BCKI.

Cho hình chóp S, đáy ABCD là hình chữ nhật cạnh AB = a, AD = 2a hai mặt

Câu hỏi

Nhận biết

Cho hình chóp S, đáy ABCD là hình chữ nhật cạnh AB = a, AD = 2a hai mặt bên (SAB) và (SAD) cùng vuông góc với đáy. Cho SA = a√3, trên SA lấy 1 điểm I sao cho SI = \frac{2a\sqrt{3}}{3}. Gọi K là giao điểm của SD với mặt phẳng (BCI). Tính thể tích khối chóp S.BCKI.


A.
Do đó V = -\frac{10a^{3}\sqrt{3}}{27} (đvtt)
B.
Do đó V = \frac{10a^{3}\sqrt{3}}{27} (đvtt)
C.
Do đó V = -\frac{10a^{3}\sqrt{3}}{9} (đvtt)
D.
Do đó V = \frac{10a^{3}\sqrt{3}}{9} (đvtt)
Đáp án đúng: B

Lời giải của Luyện Tập 365

             

Chứng minh (BDI) ⊥ (SAB).

Kẻ SH ⊥ BI => SH => (BCI)

Lập luận BCKI là hình thang vuông ở B, I.

Tính BC, BI, IK:

BC = 2a, BI = \frac{2a\sqrt{3}}{3}

IK = \frac{4a}{3} => SBCKI =  \frac{10a^{2}\sqrt{3}}{9}

Lập luận tam giác vuông SAB là nửa tam giác đều , I là trọng tâm của tam giác đều 

=> H thuộc trung điểm của cạnh tam giác đều => SH = BA = a

Do đó V = \frac{10a^{3}\sqrt{3}}{27} (đvtt)

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1