Skip to main content

Cho hàm số y = mx - 2m + 1 có đồ thị (d) và điểm A(2;1) Trả lời câu hỏi dưới đây:Viết phương trình đường thẳng OA

Cho hàm số y = mx - 2m + 1 có đồ thị (d) và điểm A(2;1)            Trả lờ

Câu hỏi

Nhận biết

Cho hàm số y = mx - 2m + 1 có đồ thị (d) và điểm A(2;1)

Trả lời câu hỏi dưới đây:

Viết phương trình đường thẳng OA


A.
(OA): y = x -3
B.
(OA) : y = x/2
C.
(OA): y = -x
D.
(OA): y = 2x +1
Đáp án đúng: B

Lời giải của Luyện Tập 365

Câu hỏi liên quan

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB