Skip to main content

Cho E là tập hợp các số gồm 3 chữ số khác nhau đôi một được lập thành từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một phần tử của E. Tính xác suất sao cho lấy được một số mà các chữ số của nó đều chẵn.

Cho E là tập hợp các số gồm 3 chữ số khác nhau đôi một được lập thành từ các số 1,

Câu hỏi

Nhận biết

Cho E là tập hợp các số gồm 3 chữ số khác nhau đôi một được lập thành từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một phần tử của E. Tính xác suất sao cho lấy được một số mà các chữ số của nó đều chẵn.


A.
P = \frac{1}{15}
B.
P = \frac{1}{20}
C.
P= \frac{1}{25}
D.
P = \frac{1}{30}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Tìm số phần tử của E:

Gọi \overline{abc} là số có 3 chữ số khác nhau. Khi đó a có 6 cách chọn từ 1 đến 6 còn b có 5 cách  chọn (trừ số đã chọn cho a), c có 4 cách chọn

Vậy có tất cả 6.5.4 = 120 số thuộc E.

Gọi  Ω là không gian mẫu. Do chọn 1 phần tử thuộc E nên n( Ω ) = 120

Gọi A là biến số: "chọn được số mà các chữ số của nó đều chẵn " 

=> A = {246; 264; 462; 426; 642; 624} -> n(A) = 6

Vậy xác suất cần tìm là P(A) = \frac{n(A))}{n(\Omega )}  = \frac{6}{120} = \frac{1}{20}

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx