Skip to main content

Cho đường tròn (O; R) và tam giác cân ABC (AB = AC > R) có ba đỉnh nằm trên đường tròn đó. Kẻ đường kính AI. Gọi M là một điểm bất kì trên cung nhỏ AC. Mx là tia đối của tia MC. Trên tia đối của tia MB lấy một điểm D sao cho MD = MC. Trả lời câu hỏi dưới đây:Gọi K là giao điểm thứ hai của đường thẳng DC với đường tròn(O) . Tứ giác MIKD là hình gì? Tại sao?

Cho đường tròn (O; R) và tam giác cân ABC (AB = AC > R) có ba đỉnh nằm trên đường tròn

Câu hỏi

Nhận biết

Cho đường tròn (O; R) và tam giác cân ABC (AB = AC > R) có ba đỉnh nằm trên đường tròn đó. Kẻ đường kính AI. Gọi M là một điểm bất kì trên cung nhỏ AC. Mx là tia đối của tia MC. Trên tia đối của tia MB lấy một điểm D sao cho MD = MC.

Trả lời câu hỏi dưới đây:

Gọi K là giao điểm thứ hai của đường thẳng DC với đường tròn(O) . Tứ giác MIKD là hình gì? Tại sao?


A.
Hình bình hành
B.
Hình thoi
C.
Hình chữ nhật
D.
Hình vuông.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Tia đối của tia MA là tia phân giác của góc CMD mà ∆ MCD cân

=> MA ┴ CD   => MI // KD  =>  

=> \widehat{MIK}=\widehat{BMI} (so le trong) nên IK // MD

Vậy MIKD là hình bình hành.

Câu hỏi liên quan

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Rút gọn A

    Rút gọn A

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2