Skip to main content

Cho đường tròn (O; R), đường kính AB và một điểm M nằm trên đường tròn sao cho MA > MB. Các tiếp tuyến của đường tròn tại M và B cắt nhau tại điểm P. Các đường thẳng AB, MP cắt nhau tại điểm Q; các đường thẳng AM, OM cắt đường thẳng BP lần lượt tại các điểm R, S. Trả lời câu hỏi dưới đây:Chứng minh rằng tứ giác AMPO là hình thang.

Cho đường tròn (O; R), đường kính AB và một điểm M nằm trên đường tròn sao cho MA > MB.

Câu hỏi

Nhận biết

Cho đường tròn (O; R), đường kính AB và một điểm M nằm trên đường tròn sao cho MA > MB. Các tiếp tuyến của đường tròn tại M và B cắt nhau tại điểm P. Các đường thẳng AB, MP cắt nhau tại điểm Q; các đường thẳng AM, OM cắt đường thẳng BP lần lượt tại các điểm R, S.

Trả lời câu hỏi dưới đây:

Chứng minh rằng tứ giác AMPO là hình thang.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

OP ┴ MB , AM ┴ MP  (\widehat{AMB}= 1v)   => AM // OP  => AMPO là hình thang.

Câu hỏi liên quan

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông