Skip to main content

Cho đường tròn (O; R), đường kính AB và một điểm M nằm trên đường tròn sao cho MA > MB. Các tiếp tuyến của đường tròn tại M và B cắt nhau tại điểm P. Các đường thẳng AB, MP cắt nhau tại điểm Q; các đường thẳng AM, OM cắt đường thẳng BP lần lượt tại các điểm R, S. Trả lời câu hỏi dưới đây:Gọi R1 là điểm đối xứng với R qua đường thẳng AB. Chứng minh rằng tứ giác ASQR1 nội tiếp được

Cho đường tròn (O; R), đường kính AB và một điểm M nằm trên đường tròn sao cho MA > MB.

Câu hỏi

Nhận biết

Cho đường tròn (O; R), đường kính AB và một điểm M nằm trên đường tròn sao cho MA > MB. Các tiếp tuyến của đường tròn tại M và B cắt nhau tại điểm P. Các đường thẳng AB, MP cắt nhau tại điểm Q; các đường thẳng AM, OM cắt đường thẳng BP lần lượt tại các điểm R, S.

Trả lời câu hỏi dưới đây:

Gọi R1 là điểm đối xứng với R qua đường thẳng AB. Chứng minh rằng tứ giác ASQR1 nội tiếp được


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Vì R1 đối xứng với R qua AB nên \widehat{R_{1}AQ}=\widehat{RAQ} .  Ta lại có AM // OP ; MB // SQ ; OP ┴ MB nên AM ┴ SQ. Do đó, \widehat{R_{1}SQ}=\widehat{RAQ}  (cạnh tương ứng vuông góc).

Suy ra \widehat{R_{1}AQ}=\widehat{R_{1}SQ}  và tứ giác ASQR1 nội tiếp được.

Câu hỏi liên quan

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}