Skip to main content

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, M là một điểm trên cung nhỏ AC. Tiếp tuyến của đường tròn (O) tại M cắt tia DS tại S. Gọi I là giao điểm của CD và MB. Trả lời câu hỏi dưới đây:Chứng minh tứ giác AMIO nội tiếp được một đường tròn.

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, M là một điểm trên cung

Câu hỏi

Nhận biết

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, M là một điểm trên cung nhỏ AC. Tiếp tuyến của đường tròn (O) tại M cắt tia DS tại S. Gọi I là giao điểm của CD và MB.

Trả lời câu hỏi dưới đây:

Chứng minh tứ giác AMIO nội tiếp được một đường tròn.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Tứ giác AMIO nội tiếp đường tròn vì có \widehat{AMI}+\widehat{AOI}=180^{\circ}

Câu hỏi liên quan

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Rút gọn A

    Rút gọn A

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2