Skip to main content

Cho đường tròn (O), đường kính AB = 2R và một điểm M chuyển động trên nửa đường tròn đó . Vẽ đường tròn tâm E tiếp xúc với đường tròn (O) ở M và tiếp xúc với đường kính AB ở N. Đường tròn (E) cắt MA, MB lần lượt ở C và D. Trả lời câu hỏi dưới đây:Gọi giao điểm của các tia CN, DN với KB, KA lần lượt là C', D'. Tìm vị trí của điểm M để chu vi tam giác NC'D' đạt giá trị nhỏ nhất.

Cho đường tròn (O), đường kính AB = 2R và một điểm M chuyển động trên nửa đường tròn đó

Câu hỏi

Nhận biết

Cho đường tròn (O), đường kính AB = 2R và một điểm M chuyển động trên nửa đường tròn đó . Vẽ đường tròn tâm E tiếp xúc với đường tròn (O) ở M và tiếp xúc với đường kính AB ở N. Đường tròn (E) cắt MA, MB lần lượt ở C và D.

Trả lời câu hỏi dưới đây:

Gọi giao điểm của các tia CN, DN với KB, KA lần lượt là C', D'. Tìm vị trí của điểm M để chu vi tam giác NC'D' đạt giá trị nhỏ nhất.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

CN cắt BK tại C', DN cắt KA tại D'. Tứ giác NC'KD' là hình chữ nhật vì có ba góc vuông, ta có ND' = C'K và D'C' = NK

Tam giác BC'N vuông cân nên NC' = C'B

Vậy chu vi ∆ NC'D' bằng ND' + NC' + D'C' = KC' + C'B + NK = KB + NK.

Vì KB không đổi nên chu vi tam giác NC'D' nhỏ nhất khi và chỉ khi NK nhỏ nhất.

Do NK ≥ OK , nên NK nhỏ nhất khi và chỉ khi NK = OK  <=> N trùng O

Khi đó M trùng với K' (trong đó K, O, K' thẳng hàng ).

Câu hỏi liên quan

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k