Skip to main content

Cho đường tròn (O) đường kính AB = 2R. Trên tia đối của tia BA lấy điểm C sao cho BC = R, trên đường tròn lấy điểm D sao cho BD = R. Đường thẳng vuông góc với BC tại C cắt AD ở M. Trả lời câu hỏi dưới đây:Cung BD của đường tròn (O) chia tam giác ABM thành hai phần. Tính phần diện tích của tam giác nằm ngoài đường tròn (O).

Cho đường tròn (O) đường kính AB = 2R. Trên tia đối của tia BA lấy điểm C sao cho BC = R,

Câu hỏi

Nhận biết

Cho đường tròn (O) đường kính AB = 2R. Trên tia đối của tia BA lấy điểm C sao cho BC = R, trên đường tròn lấy điểm D sao cho BD = R. Đường thẳng vuông góc với BC tại C cắt AD ở M.

Trả lời câu hỏi dưới đây:

Cung BD của đường tròn (O) chia tam giác ABM thành hai phần. Tính phần diện tích của tam giác nằm ngoài đường tròn (O).


A.
S=\frac{R^{2}(9\sqrt{3}-2\pi )}{3}
B.
S=\frac{R^{2}(9\sqrt{3}-2\pi )}{4}
C.
S=\frac{R^{2}(9\sqrt{3}-2\pi )}{6}
D.
S=\frac{R^{2}(9\sqrt{3}-2\pi )}{12}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi S là diện tích phải tính hình có gạch, S' là diện tích hình viên phân tạo bởi cung BD. Thì S = \frac{1}{2}S_{AMB}-S'

Mà S'=S_{q(DOB)}-S_{ODB}   => S= \frac{1}{2}S_{AMB}+S_{ODB}-S_{qDOB}

S=\frac{R^{2}\sqrt{3}}{2}+\frac{R^{2}\sqrt{3}}{4}-\frac{\pi R^{2}}{6} 

=> S=\frac{R^{2}(9\sqrt{3}-2\pi )}{12}

Câu hỏi liên quan

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên