Skip to main content

Cho đường tròn (A; 5 cm) và một điểm B cách A một khoảng AB = 8 cm. Từ B kẻ tiếp tuyến BT và cát tuyến BNM (N nằm giữa B và M). Gọi H là hình chiếu của T trên AB. Trả lời câu hỏi dưới đây:Chứng minh rằng hai tam giác MBT và TBN đồng dạng.

Cho đường tròn (A; 5 cm) và một điểm B cách A một khoảng AB = 8 cm. Từ B kẻ tiếp tuyến BT

Câu hỏi

Nhận biết

Cho đường tròn (A; 5 cm) và một điểm B cách A một khoảng AB = 8 cm. Từ B kẻ tiếp tuyến BT và cát tuyến BNM (N nằm giữa B và M). Gọi H là hình chiếu của T trên AB.

Trả lời câu hỏi dưới đây:

Chứng minh rằng hai tam giác MBT và TBN đồng dạng.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Dễ dàng chứng minh được ∆ MBT ~ ∆ TBN 

=> \frac{MB}{BT}=\frac{BT}{BN}  

=> BT^{2}=MB.NB   (1)

Câu hỏi liên quan

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K