Skip to main content

Cho các số thực dương a, b phân biệt thỏa mãn điều kiện ab ≤ 4. Tìm giá trị nhỏ nhất của biểu thức P = \frac{2}{a^{4}} + \frac{2}{b^{4}} + \frac{3}{(a-b)^{2}}

Cho các số thực dương a, b phân biệt thỏa mãn điều kiện ab ≤ 4. Tìm giá

Câu hỏi

Nhận biết

Cho các số thực dương a, b phân biệt thỏa mãn điều kiện ab ≤ 4. Tìm giá trị nhỏ nhất của biểu thức P = \frac{2}{a^{4}} + \frac{2}{b^{4}} + \frac{3}{(a-b)^{2}}


A.
Giá trị nhỏ nhất của P là \frac{17}{6}
B.
Giá trị nhỏ nhất của P là- \frac{13}{8}
C.
Giá trị nhỏ nhất của P là \frac{13}{8}
D.
Giá trị nhỏ nhất của P là \frac{15}{6}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Từ giả thiết 0 < ab ≤  4 ta có

P ≥ \frac{a^{2}b^{2}}{16}(\frac{2}{a^{4}}+\frac{2}{b^{4}}) + \frac{ab}{4}.\frac{3}{(a-b)^{2}} = \frac{1}{8}(\frac{a^{2}}{b^{2}} + \frac{b^{2}}{a^{2}}) + \frac{3}{4}.\frac{1}{\frac{a}{b}+\frac{b}{a}-2}

Đặt t = \frac{a}{b} + \frac{b}{a}. Khi đó t ≥ 2 và P≥ \frac{1}{8}(t2-2) + \frac{3}{4}.\frac{1}{t-2} = \frac{1}{8}t2 + \frac{3}{4}.\frac{1}{t-2} - \frac{1}{4}.

Xét hàm f(t) = \frac{1}{8}t2 + \frac{3}{4}.\frac{1}{t-2} - \frac{1}{4} trên (2;+∞). Ta có

             f'(t) = \frac{1}{4}t - \frac{3}{4}.\frac{1}{(t-2)^{2}}; f'(t) = 0⇔ t(t-2)^{2} = 3 ⇔ t = 3

\lim_{t\rightarrow2^{+}}f(t) =\lim_{t\rightarrow+\infty}f(t) = +∞ nên \min_{(0;+\infty)}f(t) = f(3) = \frac{13}{8}

Suy ra P ≥ \frac{13}{8}, dấu đẳng thức xảy ra khi \left\{\begin{matrix}ab=4\\t=3\end{matrix}\right.\left\{\begin{matrix}ab=4\\a+b=2\sqrt{5}\end{matrix}\right.

hay \begin{bmatrix}a=\sqrt{5}-1,b=\sqrt{5}+1\\a=\sqrt{5}+1,b=\sqrt{5}-1\end{bmatrix}

Vậy giá trị nhỏ nhất của P là \frac{13}{8}.

Câu hỏi liên quan

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx