Skip to main content

Cho biểu thức D=\left ( \frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+ \frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}} \right ): \left ( 1+\frac{a+b+2ab}{1-ab} \right ) với a>0, b>0, ab\neq 1 Trả lời câu hỏi dưới đây: Rút gọn D.

Cho biểu thức D=

Câu hỏi

Nhận biết

Cho biểu thức D=\left ( \frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+ \frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}} \right ): \left ( 1+\frac{a+b+2ab}{1-ab} \right )

với a>0, b>0, ab\neq 1

Trả lời câu hỏi dưới đây:

Rút gọn D.


A.
D = \frac{2\sqrt{ab}}{1+a}
B.
D = \frac{-2\sqrt{ab}}{1+a}
C.
D = \frac{-2\sqrt{a}}{1+a}
D.
D = \frac{2\sqrt{a}}{1+a}
Đáp án đúng: D

Lời giải của Luyện Tập 365

D=\left ( \frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+ \frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}} \right ): \left ( 1+\frac{a+b+2ab}{1-ab} \right )

\frac{(\sqrt{a}+\sqrt{b})(1+\sqrt{ab})+(\sqrt{a}-\sqrt{b})(1-\sqrt{ab})}{1-ab}:\frac{1-ab+a+b+2ab}{1-ab}

=\frac{2\sqrt{a}+2b\sqrt{a}}{1-ab}:\frac{1+ab+a+b}{(1+a)(1+b)} 

\frac{2\sqrt{a}(1+b)}{1-ab}:\frac{(1+a)(1+b)}{1-ab} = \frac{2\sqrt{a}(1+b)}{1-ab}.\frac{1-ab}{(1+a)(1+b)}

\frac{2\sqrt{a}}{1+a}

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Rút gọn A

    Rút gọn A

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.