Skip to main content

Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh: ab + bc + ca ≤ a2 + b2 + c2 < 2(ab + bc + ca ).

Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh:
ab + bc + ca ≤ a2 + b2 + c2 <

Câu hỏi

Nhận biết

Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh:

ab + bc + ca ≤ a2 + b2 + c2 < 2(ab + bc + ca ).


A.
Click để xem lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: (a – b)2 + (b – c)2 + (c – a)2 ≥ 0

<=>  2(a2 + b2 + c2) ≥ 2(ab + bc + ca)

<=>  a2 + b2 + c2 ≥ ab + bc + ca   (1)

Vì a, b, c là độ dài 3 cạnh của một tam giác nên ta có: a2 < a.(b+ c)

=> a2 < ab + ac.

 Tương tự: b2 < ab + bc; c2 < ca + bc. Suy ra: a2 + b2 + c2 < 2(ab + bc + ca)   (2).

Từ (1) và (2) suy ra điều phải chứng minh.

Câu hỏi liên quan

  • Rút gọn A

    Rút gọn A

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A