Skip to main content

Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh: ab + bc + ca ≤ a2 + b2 + c2 < 2(ab + bc + ca ).

Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh:
ab + bc + ca ≤ a2 + b2 + c2 <

Câu hỏi

Nhận biết

Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh:

ab + bc + ca ≤ a2 + b2 + c2 < 2(ab + bc + ca ).


A.
Click để xem lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: (a – b)2 + (b – c)2 + (c – a)2 ≥ 0

<=>  2(a2 + b2 + c2) ≥ 2(ab + bc + ca)

<=>  a2 + b2 + c2 ≥ ab + bc + ca   (1)

Vì a, b, c là độ dài 3 cạnh của một tam giác nên ta có: a2 < a.(b+ c)

=> a2 < ab + ac.

 Tương tự: b2 < ab + bc; c2 < ca + bc. Suy ra: a2 + b2 + c2 < 2(ab + bc + ca)   (2).

Từ (1) và (2) suy ra điều phải chứng minh.

Câu hỏi liên quan

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.