Skip to main content

Cho a, b, c là các số thực thỏa mãn a2 + b2 + c2 = 1. Tìm giá trị lớn nhất của biểu thức P = ab + bc + 2ac.

Cho a, b, c là các số thực thỏa mãn a2 + b2 + c

Câu hỏi

Nhận biết

Cho a, b, c là các số thực thỏa mãn a2 + b2 + c2 = 1. Tìm giá trị lớn nhất của biểu thức P = ab + bc + 2ac.


A.
maxP = \frac{\sqrt{3}+7}{2}
B.
maxP = \frac{\sqrt{3}+5}{2}
C.
maxP = \frac{\sqrt{3}+1}{2}
D.
maxP = \frac{\sqrt{3}+2}{2}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Ta có P = ( a + c)b + 2ca ≤ \sqrt{2(a^{2}+c^{2})b} + a2 + c2 = \sqrt{2(1-b^{2})b} +1 – b2 = f( b2)

Với hàm số f(t) = \sqrt{2(1-t)t} + 1 – t, t ∈[0,1].

Ta có: f’ = \tfrac{1-2t}{\sqrt{2(1-t)t}} - 1, f’ = 0 ⇔ t = \frac{3-\sqrt{3}}{6} = t0 ( do khi đó 1 – 2t ≥ 0 ).

Từ đó f(t) đồng biến trên ( 0 , t0) và nghịch biến trên (t0 , 1)

suy ra maxf = f (\frac{3-\sqrt{3}}{6} ) = \frac{\sqrt{3}+1}{2} tức là maxP = \frac{\sqrt{3}+1}{2}chẳng hạn khi b = ±√t0 và a = c = ±\frac{1}{\sqrt{2}}\sqrt{1-t_{0}^{2}}

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.